

Intelligent Motor Control Solutions "Enabling Smart Manufacturing"

Martin Štubňa Manager – Component Business

PUBLIC INFORMATION

CII

Allen-Bradley . Rockwell Software

RockwellINTELLIGENT MOTOR CONTROL SOLUTIONSAutomationDELIVER IMMEDIATE VALUE & LONG-TERM FLEXIBILITY

RockwellINTELLIGENT MOTOR CONTROL SOLUTIONSAutomationDELIVER IMMEDIATE VALUE & LONG-TERM FLEXIBILITY

ENERGY EFFICIENCY DEVELOPMENT TIME INSTALLATION COSTS DOWNTIME & MAINTENANCE PERSONNEL/EQUIPMENT PROTECTION

PUBLIC INFORMATION

LOWER TOTAL COST OF OWNERSHIP

CII

What is Intelligent Motor Control ?

Rockwell Automation

A future-proof architecture that applies sophisticated control technologies with communication capabilities helping you improve system performance and gain operation efficiencies across your Connected Enterprise.

- Maximize your asset availability
- Improve time to market

- Enhanced energy management
- Protect your personnel and assets

Intelligent Motor Control

Rockwell Automation

Single network: Full access to any device from any location

Motor Control Technologies Scalable Low Voltage & Medium Voltage Solutions

Rockwell Automation

Across-the-Line Starters

Full Voltage Fixed Speed

CII

PUBLIC INFORMATION

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

nfedecation dian Industri

Connected Enterprise Intelligent Motor Control

Rockwell Automation

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

Conventional v Intelligent Motor Control

Rockwell Automation

Time to trip

Warning..

Starts per hour

exceeded

FLC – 47.5 Amps Motor 6

Warning.. Vibration alert Pump 7

Intelligent Motor Control provides key diagnostic information that enables you to optimise performance with real-time access to operation and performance trends.

Access to production and machine data helps you to make informed decisions that improve production and mitigate downtime, increase productivity and boost profitability, offering substantial benefits over conventional approaches.

The conventional approach

Many devices are still hard wired and unable to communicate with higher level control systems and are therefore unable to provide access to real-time data • No access to real-time data

- ON, OFF and Tripped no pre-warnings possible
 User manual fault finding process no diagnostics data
- Unnecessary downtime periods
- Higher maintenance costs possible
- Changing parameters requires a specialist engineer
 Hard to track and record energy costs

Energy & Power

The Today's Intelligent approach

- Seamless communication and system visibility for increased performance and flexibility
- Operate and maintain motor performance through intelligent
 equipment and networks
- Reduce unplanned downtime with alarms and advanced diagnostic information
- Monitor energy consumption
- Remote monitoring helps keep personnel away from potential hazards
- Simplified troubleshooting and reduced start-up times

CII

Rockwell Automation

Motor costs

- Motors are the largest consumer of energy in industry
- Motors consume in excess of 50% of energy in industrial applications
- A motor costs 10 times its initial purchase price each year
- Reducing the speed of a motor by 20% saves 50% in running costs

PUBLIC INFORMATION

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

СШ

Motor costs

PUBLIC INFORMATION

- Motors are the largest consumer of energy in industry
- Motors consume in excess of 50% of energy in industrial applications
- A motor costs 10 times its initial purchase price each year
- Reducing the speed of a motor by 20% saves 50% in running costs

<u>Why motors fail</u>

- The most common causes of motor failure are ...
- Thermal Overloads
- Single phasing
- Bearing failure
- Rotor failure
- Stator failure
- Contaminants

Rockwell Automation

Motor costs

- Motors are the largest consumer of energy in industry
- Motors consume in excess of 50% of energy in industrial applications
- A motor costs 10 times its initial purchase price each year
- Reducing the speed of a motor by 20% saves 50% in running costs

<u>Why motors fail</u>

- The most common causes of motor failure are ...
- Thermal Overloads
- Single phasing
- Bearing failure
- Rotor failure
- Stator failure
- Contaminants

Cost of downtime

- Loss of production
- Manufacturing scrappage
- Establishing cause of failure(Mechanical/Elec trical)
- Motor and system
 repair costs
- Safety issues
- Impact on other equipment

PUBLIC INFORMATION

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

Confederation of Indian Industry

Rockwell Automation

Motor costs

- Motors are the largest consumer of energy in industry
- Motors consume in excess of 50% of energy in industrial applications
- A motor costs 10 times its initial purchase price each year
- Reducing the speed of a motor by 20% saves 50% in running costs

<u>Why motors fail</u>

- The most common causes of motor failure are ...
- Thermal Overloads
- Single phasing
- Bearing failure
- Rotor failure
- Stator failure
- Contaminants

Cost of downtime

- Loss of production
- Manufacturing scrappage
- Establishing cause of failure(Mechanical/Elec trical)
- Motor and system repair costs
- Safety issues
- Impact on other equipment

Increase productivity

- Reducing unplanned downtime improves productivity
- Be in control of your production process
- Reduce energy costs
- Make fact based decisions with advanced diagnostic information

PUBLIC INFORMATION

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

CIII Confederation of

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

Rockwell Which motor is the most critical? **Automation** Pump **API-670** Roller Is it the smallest Is it the largest Reciprocating motor? motor ? Extruder Compressor Hydro **Steam Turbine** Turbine Safety Low (SIL-2) Speed It depends on the Gear **Expander Turbine** application needs ! Set Fluid Film Motor **Bearings** Conventional motor control **High Speed** Fan solutions may not offer the Axial Motor/Generator Compressor control and protection **Anti Friction** Crusher **Bearings** options you require ! Machine **Gas Turbine** Tools Confederation o

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

Energy Management Conventional vs IMC Solution

Rockwell Automation

Conventional Solution

Issues

- Only total power consumption information available
- No data available from individual motors without additional costs
- Information only available locally and not remotely
- Load shedding options unknown
- No historical trend information
- Event snapshot information not available

Energy Management Conventional vs IMC Solution

Intelligent Motor Control

Benefits

PUBLIC INFORMATION

- Energy consumption data available for each individual motor
- Data available anywhere which improves decision making
- Accurate historic data available
- Optimised energy management
- Reduced energy costs
- Email or SMS in case of unexpected consumption increase

Rockwell Automation

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

Intelligent Motor Control

CII

The E300 is fully integrated into the Integrated Architecture®

- Network connectivity Native EtherNet/IP reduces hardware and engineering cost
- Integrated into Logix Device profiles and faceplates reduce engineering time and project development
- Automatic Device Configuration *Reduces time to repair*

E300 – Electronic Overload Relay

PUBLIC INFORMATION

- Intelligent, Scalable, Modular
- 0.5 ... 200A with various mounting styles
- Current and voltage / Power measurement
- PTC and Ground-fault protection
- Embedded Inputs/Outputs
- Integrated into Logix Architecture
- Dual-port Ethernet/IP with Device Level Ring
- Embedded Web-server

Rockwell

Automatio

Embedded Diagnostics

Rockwell Automation

Current

Embedded Diagnostics

Rockwell Automation

The modular design allows users to have choices in each of the sensing, control, and communications modules with additional accessories to tailor the E300 overload relay or exact needs of the application:

- Multiple Sensing Capabilities (*Current, Ground Fault Current, and Voltage and Power*)
- Simplified Control Wiring (120V AC, 240V AC, and 24V DC)
- Wide Current Range (10:1 and Higher)
- Expansion I/O (Digital and Analog I/O)
- Operator Interfaces (Multiple Languages)
- Stocked Modules for Fast Replacement

Motor Diagnostics

- The E300 provides a wide variety of diagnostic information to monitor motor performance and proactively alert users to possible motor issues
- This information can trigger either manual or automatic intervention before the occurrence of an unplanned shutdown
 - Voltage, Current, and Energy
 - CIP Energy Enabled
 - Trip / Warning Histories
 - % Thermal Capacity Utilization
 - Motor Winding Temperature
 - Trip Snap Shot
 - Time to Trip

- Time to Reset
- Operational Hours
- Number of Starts

Allen-Bradley	E	E300 6In3Out24VDC VIGPt5to30Amp				Automation	
Expand Minimize Home	^	Current Monito					
Device Monitor	-	Parameter	Name	Data Type	Value	Unit	
Current Monitor	-	43	L1Current	DINT	3.29	Amps	
Power Monitor		44	L2Current	DINT	3.29	Amps	
Energy Monitor Analog Monitor	М	45	L3Current	DINT	0.00	Amps	
Trip/Warn Histry		46	AverageCurrent	DINT	2.20	Amps	
Trip Snapshot		47	L1PercentFLA	UINT	109.9	%	
Overload Setup		48	L2PercentFLA	UINT	109.8	96	
Device Setup		49	L3PercentFLA	UINT	0.3	96	
[m] 1		50	Aug DorcontELA	UTAT	72.2	D/4	

E300 – User friendly design & commissioning

- Add On Profile for Studio5000 aids programming into Logix
- Add-on Instructions provide the Logic for Hand/auto control
- Dual-port Ethernet/IP allows Star, Linear or Ring Topology
- Auto Device Configuration (ADC)
- Embedded web server
- Supports SMTP messaging

To and the second secon

And also:

- Wide current adjustment range of 1:10
- Choice of mounting style

Rockwell

Automation

E300 Electronic Overload Advanced Diagnostics

Conventional v IMC Solution

Rockwell Automation

Conventional Solution

Issues

PUBLIC INFORMATION

- Overload trips without warning
- Location of motor or cause of trip unknown
- Loss of production and potential scrappage costs
- Reduced motor life
- A restart of the motor could cause additional damage
- Productivity levels impacted

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

E300 Electronic Overload Advanced Diagnostics

Conventional v IMC Solution

Rockwell Automation

Intelligent Motor Control

Benefits

- Early warning provided from diagnostics information
- Minimal or no loss of production / downtime
- Preventive maintenance solution
- Restart of process simplified and under control
- Simplified troubleshooting
- Trend information can highlight issues before they occur

Commercial Benefits of Intelligent Motor Control

Conventional Solution

- Locate, remove, replace and configure new drive/relay
- Time taken approximately <u>1.2 hours</u>
- Production costs US\$ 13,000 per hour
- Controls/commissioning engineer required
- Total lost revenue UD\$ 15,600

Intelligent Solution

- Locate, remove, replace and configure new ADR embedded drive/relay
- Time taken approximately <u>15 minutes</u>
- Production costs US\$ 13,000 per hour
- Shift electrician required
- Total lost revenue US\$ 3,250

Copyright © 2014 Rockwell Automation, Inc. All Rights Reserved.

Confederation

Rockwell

Automation

Benefits of Intelligent Motor Control

Enterprise Customers:

- Real Time diagnostic information
- Minimized downtime Or Less maintenance time.
- Fast and simply system recovery
- Even network breakdown, local control can maintain
- Reduced equipment damage
- Easy to prepare maintenance schedule for preventing the serious fault coming

Panel Builders:

- Reduced panel installation costs and time over 30%
- Increased panel productivity over 30%
- Production process to become assembly line method
- Consolidated cable purchase

System Integrators & OEM:

- Reduced system design costs over 20%
- Reduced testing/commissioning costs over 50%
- Reduced overall documentation costs over 50%

Rockwell Automation

CII

Intelligent Motor Control Solutions "Enabling Smart Manufacturing"

Martin Štubňa Manager – Component Business

PUBLIC INFORMATION

CII

Allen-Bradley . Rockwell Software